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Diastereoselective vinylogous aldol reaction is reported by
exploiting a silylated dioxinone to give anti-adducts in high
selectivity.

Vinylogous aldol reactions of acetoacetate derivatives allow
the synthesis of ¤-hydroxy-¢-keto acids and derivatives, which
are useful building blocks for biologically active natural
products.1 Cyclic dienolate I derived from dioxinone 1 is
particularly useful2 to give adduct 2, which serves as versatile
intermediate to allow various elaborations (eq 1).
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Another feature of dioxinone is its ability to serve as the
precursor to ketene species.3 We exploited this feature in our
recent total synthesis of macrocidin A (3), a cyclic tetramic acid
natural product: the dioxinone in III was used for generating the
key ketene species II for macrocyclization (Figure 1).4 As for
control of the C(12)-stereogenic center next to the dioxinone
moiety, the Pfaltz asymmetric hydrogenation5 worked in
excellent selectivity for trisubstituted olefin V.

In addressing the synthesis of the congener with an extra
hydroxy group at C(13), macrocidin B (4: R = OH), we
envisioned that a unified strategy would be realized, given that
the vinylogous aldol reaction proceeded in anti-selective manner
to establish C(12) and C(13) stereogenic centers (VI¼ IV).

However, we noted an uneasy situation, because in contrast
to the impressive advances in enantioselective reactions for
simple dienolate I (vide supra),2 no enantio- or even diaster-
eoselective reactions have been developed for £-methyl dien-
olate VII (Scheme 1): the syn/anti stereoselectivity is low,2b,6

suggesting the difficulty in controlling its E/Z geometry. At this

juncture, an idea occurred to us: if a bulky substituent, such as
a trimethylsilyl group, were introduced to dioxinone as in 7,
allylic strain7 would allow stereocontrolled enolization.

This communication describes an affirmative answer to this
scenario, and introduction of a silyl group to the 5-position of
dioxinone indeed realizes the vinylogous aldol reaction in highly
anti-selective manner.

For the required installation of a silyl group, several sets of
conditions were applied to model dioxinone 1, which turned out
to be not straightforward. Direct silylation (Me3SiOTf and
NEt3)8 only gave the wrong regioisomer 9, while vinylmagne-
sium species,9 generated from iodide 11, failed to react with
silylating agent (Figure 2).

As for the latter process, we expected that the corresponding
vinyllithium species may be more reactive, which indeed proved
to react with silylating agents (Table 1). A high-yielding
protocol was established, including the addition of n-butyllithi-
um to the premixed solution of iodide 11 and silyl triflates in
THF at ¹90 °C, by which several trialkylsilyl groups proved to
be installed (Runs 1­3).10

This protocol allowed the silylation of homologous dioxi-
none 5 [note that ethyl group is at C(6)], and iodination­
silylation by the above-mentioned conditions gave 7 as colorless
oil (Scheme 2).
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Figure 1. Retrosynthesis of the macrocidins.
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Scheme 1. Vinylogous aldol reaction.
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Figure 2. Attempts for the introduction of silyl group.
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Upon attempts at the vinylogous aldol reaction of 7, via its
lithium dienolate, with benzaldehyde, we were pleased to find
the desired product 13 was obtained in high anti-selectivity
(syn/anti = 1:6) (Scheme 3).11 By contrast, the corresponding
reaction of the nonsilylated dioxinone 5 gave syn-adduct 14
in moderate stereoselectivity, clearly showing the role of the
trimethylsilyl group for stereocontrol.12

The (Z) geometry of the enolate VIII was confirmed by
trapping experiment by treatment of 7 with LDA followed by
Me3SiCl followed by NOE study (CDCl3, 400MHz). This
geometric selectivity could be explained by an allylic interaction
between the trimethylsilyl group and the methyl group. This
trapping was also possible in a preparative scale to give dienol
silyl ether 15 as colorless liquid; 63% yield (70­71 °C/
0.3mmHg) (Scheme 4).

We turned our attention to the Mukaiyama conditions by
using dienol silyl ether 15.13 Several Lewis acids were screened
in the reactions by adding them to a preformed mixture of
benzaldehyde and dienol silyl ether 15 (Table 2). While
Me3SiOTf or BF3¢OEt2 gave low stereoselectivity (Runs 1
and 2), high anti-selectivities were observed by bulky Lewis
acids, such as SiCl4 and TiCl2(Oi-Pr)2 (Runs 4 and 5). An
optimal set of conditions was established: the suitable reaction
temperature was starting with ¹78 °C and was raised to ¹50 °C.

By employing MS4A as an additive, fair improvement of the
yield and stereoselectivity was observed (Run 6).14

The stereochemical outcome, i.e., anti-selectivity, could be
explained by an open transition state (TS) model. The decisive
factors are severe steric interactions between the phenyl and the
trimethylsilyl groups as well as the methyl group and the
coordinated Lewis acid in the disfavored TS A,15 which are not
present in the favored TS B (Figure 3).

The high anti-selectivity was also valid for the reaction with
aliphatic aldehyde 16, giving smoothly 17 (syn/anti = 1:8)
under the conditions stated above (Scheme 5).16

Upon attempted removal of the silyl group in adduct 13 with
n-Bu4NF, sizable epimerization was observed (Run 1, Table 3),

Table 1. Synthesis of 5-silylated dioxinones
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Scheme 2. (a) N-Iodosuccinimide, AcOH, room temp., 18 h,
87%; (b) Me3SiOTf, n-BuLi, THF, ¹90 °C, 10min, 89%.
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Scheme 3. Vinylogous aldol reaction with Li+­dienolate.
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Scheme 4. (a) LiN(i-Pr)2, THF, ¹78¼ ¹40 °C, 2 h; Me3SiCl,
¹78 °C, 1 h, 63%.

Table 2. Mukaiyama conditions
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conditions

15 13
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Run Lewis acida Time/h Yield/% syn:anti

1 Me3SiOTf 3 82b 1:1.2
2 BF3¢OEt2 4 75 1:3

3 TiCl4 3
24
(59)b

1:2.4
(1:1.2)

4 SiCl4c 3 52 1:15
5 TiCl2(Oi-Pr)2 5 22 1:10
6 TiCl2(Oi-Pr)2, MS4A 3d 72 1:22
a0.1 equiv. bYield of trimethylsilyl ether of 13. cEtN(i-Pr)2 was
added as base. dThe reaction temperature was gradually raised
to ¹50 °C.
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Figure 3. Transition-state model.
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as rationalized by generation of the dienolate IX under the basic
conditions followed by nonselective protonation. Fortunately,
the stereochemistry was completely retained in the product 18
when the desilylation as attempted under acidic conditions
(CF3CO2H). This anti-product 18 is stereoisomeric to the main
product in 14 (Scheme 3), which was obtained from 5 without a
silyl group at the C-5 position.

In summary, a highly anti-selective vinylogous aldol
reaction was developed.17 Further work is now in progress to
develop an asymmetric version of the reaction.
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